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Crystalline BeF2 and SiOr have similar structures in which tetrahedrally coordinated cations (M) are bridged 
by bi-coordinated anions (Y) producing a network of MY, tetrahedra with shared comers. Each compound 
melts to produce a very viscous liquid which no doubt is highly polymeric. When a basic fluoride is added to 
BeF, or a basic oxide is added to SiOZ, the viscosity of the resulting NY-MY, mixtures drops rapidly, presumably 
because bridging anion linkages have been broken, and the degree of polymerization decreased. This plausible 
qualitative description has been treated more quantitatively on the assumptions that: (1) The many possible 
polymeric species M,Y, which can be formed in such binary mixtures all involve tetrahedrally coordinated M 
cations and mono- or bi-coordinated Y anions; (2) the stability of each such polymeric species M.Yb depends 
primarily on the number of bridging anions (-Y-) and the number of non-bridging anions (-Y) it contains and, 
to a lesser extent, on the size of rings formed in the cross-linked polymer structures; and finally (3) the activity of 
species M.Y, in the melt can be derived from volume fractions according to Flory’s approximation for the 
entropy of mixing and from a heat-of-mixing term. Although the evaluation of component activities (aMY and 
aNv) from this model requires extensive numerical calculations, the model is inherently a simple one with but three 
adjustable parameters. It fits observed activities quite well over the full composition range in the LiF-BeF2 
system and in several silicate systems for which accurate data are available. 

As crystalline solids, SiO, and BeF, have three- 
dimensional network structures made up of SiOi- 
and BeF$- tetrahedra which share corners. Thus the 
anions 02-and F- all are bridged between two of the 
tetrahedrally coordinated central cations Si4+ and 
Be2+. Each compound readily forms glasses in 
which there seems little doubt that the tetrahedral 
coordination of the cation and the two-fold co- 
ordination of the anion is largely retained (I). Just 
above the melting points the liquids are very viscous, 
suggesting that they are still highly polymeric. 

The binary molten mixtures which are formed 
when basic oxides are added to Si02 or basic 
fluorides are added to BeF, are characterized by a 
rapidly falling viscosity (2) as the amount of the 
basic component is increased. This is presumably 
because bridging anion linkages are broken. 

I I 
-Be-F-Be- + F- + 

I I 
I I 

-Be-F’/Z- + ‘/2-F-&- 
l I 

(1) 
For-land (3) has interpreted the Si02 and BeF, 

liquidus data in such binary mixtures in terms of 
random mixing of bridging and non-bridging 
anions. Masson (4, 5) has considered the other end 
of the composition range in silica systems. According 
to his model, as Si02 is added to a basic oxide (NO) 
the monomeric anion SiOt- is formed and later, as a 
deficiency of 02- develops with increasing silica 
content, oxide ions are shared to produce increas- 
ingly long polymer anions. 

-Si--O-S& + 02- + -Ji-O- + -O-l-- I I 

I I I I 
t This research was sponsored by the U.S. Atomic Energy 
Commission under contract with the Union Carbide Corpora- 
tion. 
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In the limit, the chains become infinitely long and 
the silicon-to-oxygen ratio reaches 1:3, which 
corresponds to 50 m/o silica in an NO-SiOI system. 

More recently Pretnar (6) has proposed a model 
for such melts in which again a single sequence of 
increasingly polymeric species is proposed but with 
the interesting difference that condensed or cross- 
linked structures are included. Thus while the initial 
species are the same as those of Masson, the one 
following Si,Ofg-- is a ring S&Of:- rather than a 
chain S&Of;-. In subsequent more polymeric 
species, side-chains of SiO:- units are grown until 
another six-membered ring can be formed. With 
extended polymerization, Pretnar envisions the 
growth of spherically shaped crystalline aggregates 
which have the cristobalite structure. This single 
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FIG. 1. The array of possible polymeric anionic species 
M.Y,. (a) The initial species formed; (b) The two boundaries 
which result if the most highly cross-linked species are 
formed (I) by sharing edges of MY, tetrahedra to produce 
chains (MnY2.+2) or (II) by sharing corners of tetrahedra to 
produce network polymers with six-numbered rings as in 
crystalline SO2 or BeF2. 

sequence of structures (analogous to boundary I1 in 
Fig. 1) permits the entire composition range to be 
included in the model. While Masson assumed an 
equilibrium condition among the polymer chains 
wherein the activity of each species was proportional 
to its mole fraction, Pretner assumes an equilibrium 
condition between bridging oxide (-0-), non- 
bridging oxide (-O’-) and free oxide ions (02-) 
analogous to reaction (1) above in which the activity 
of each kind of oxide is proportional to its fraction 
of the total oxide. 

The present model was inspired by Masson’s 
approach and was developed (7) while the author 
was still unaware of Pretnar’s treatment. It contains 
some features of both previous models in that while 
all the linear polymers of Masson are included, so 
are all the condensed structures of Pretnar, as well as 
all possible combinations of both. An equilibrium 
condition analogous to that of Masson is assumed, 
but with the activities of species expressed in volume 
fractions rather than mole fractions. Heat of mixing 
effects are also included. Although the calculation 
of component activities from this model requires 
extended summations by means of a high speed 
computer, the model at its present stage of develop- 
ment has the virtue that it is a simple one with a 
small number of adjustable parameters. It will be 
compared with recent data on activities in the 
LiF-BeF, system as well as with other data which 
are available for Si02 systems. The notation to be 
used is summarized in Table I. 

1. Formulation of the Model 

1.1 Polymeric Anion Complexes. In this model we 
will consider all the possible structures M,Y, 
(omitting charge) in which the cation M (Be2+ or 
Si4+) has a coordination number of 4 and the anion 
Y (F- or 02-) either is shared between two cations 
or is coordinated to only one. All these complexes 
have a negative charge since, except for infinitely 
large ones, the ratio b/a is always greater than 2. 

All such structures which are possible can be 
classified by the array in Fig. 1. In each row, the 
number (a) of central cations increases from left to 
right; in each column the number (c) of cross links 
increases from top to bottom. Thus the first row, 
which begins with the monomer MY4 and extends 
to indefinitely large values of a by the successive 
addition of MY, groups, includes all the structures 
of Masson (M,YJ,+,). These may be linear or 
branched qhain polymers. In the second row one 
cross link has been formed, i.e., one ring has been 
closed. This lowers by one the number (b) of Y 
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TABLE I 

NOTATION 

The number of cations M and anions Y in a polynuclear anionic species M.Y,,. 
c 
% t 
d 

The number of cross links or rings in the species M.Yi,, equal to 3a + 1 - b. 
The number of shared (-Y-) and unshared (-Y) anions in M.Y,,: s = 4a - b; t = 26 - 4~. 
The deficiency (if any) in the number of M cations in M.Yb needed to produce a specified number of 
six-numbered rings (Figs. 1, 2 and Eq. (9)). 

K 
aaS,RT 

Equilibrium constant for Reaction 10. 
Free energy parameter associated with polymerization (Eqs. (10) and (11)). 

/3 = HIRT Heat of mixing parameter (Eq. (18)). 
y = GJRT Free energy parameter associated with instability of rings containing less than six M cations. 
4, b, @ -=fO,b a. br The number of moles, the volume fraction (Eq. (15)), and the activity of species M,Y, (Eqs. (20) and 

(21)). Subscript 0, 1 denotes free Y. 
nl, n2, Xl, -& The number of moles and the mole fractions of components NY(l) and MY,(2). 
&I, -@ft,fdz The activity and the activity coefficient (=.@‘/X) of components NY and MYI. 

anions present for a given number (u) of M cations 
and, hence, the general formula here is M,Y,,. 
Continuing to more highly cross-linked structures, 
the general formula is M.Y3a+L-c, where c is the 
number of cross links. 

Thus it may be seen that if the formula of a com- 
plex is specified-if a and b are specified-the 
number of cross links c is also determined. 

c=3a+l-b (2) 
Furthermore, the total number of M-Y links in a 
given complex is 4a, and this number must equal 
twice the number of shared anions (8) plus the number 
of unshared anions (t) 

Also 
2s + t = 4a. (3) 

s+t==b. (4) 
Solving for the number of shared (s) and unshared 
anions (t) 

s=4a-b; t = 2b - 4a, (5) 
we see that s and t, like c, are uniquely specified by 
the indices a and b, 

It is important to note that while the formula of a 
complex thus specifies the number of cross links and 
the number of shared and unshared anions present, 
it of course does not specify the detailed structure of 
the complex; i.e., in this classification the numerous 
structural isomers of a given formula M,Y, with 
various branchings and ring sizes are not dis- 
tinguished. 

While in Fig. 1, a and c may become indefinitely 
large, an important variable of the model is the 
location of the boundary at the left of the array which 
defines the most highly cross-linked structures 
which are formed ; i.e., those complexes which 
contain the minimum allowable value of a for a 

given value of c. Two limiting cases will be con- 
sidered, one in which a minimum ring size of two 
MY, tetrahedra is assumed and one in which a 
minimum ring size of six is assumed : 

(I) A minimum ring size of two corresponds to 
the formation of chains in the most highly cross- 
linked structures, chains in which tetrahedral edges 
are shared 

, b’f,Y,, c 2 (6) 

In this case a(min) = c + 1. 
(II) If the minimum ring size is assumed to be 

six, the most highly cross-linked structures which 
are then possible are fragments of one of the crystal- 
line forms of silica or BeF,. Here the minimum 
possible values of a for an increasing number of 
cross-links or rings in a structure were determined 
by considering an ever larger portion of the tridymite 
lattice in the form of a right hexagonal prism (Fig. 2). 
The ratio of width to height was chosen to give the 
maximum ratio of shared to unshared Y anions. 
The relationship of a to b for such a crystallite is? 

b = 2a + (9a/4)2/3. 

The expression for c is 
(7) 

c = a + 1 - (9a/4)‘13. (8) 

While these equations have exact integer solutions 
for b and c only for the regular hexagonal crystallites 
from which they were derived Eq. (8) was used to 
locate the boundary of the array for other crystal 

t This expression is almost identical to that obtained by 
Pretnar (Ref. 6) for spherical crystalline fragments of 
cristobalite. 
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FIG. 2. 

fragments of intermediate size by the approximate 
procedure of rounding off the non-integer values of c 
obtained for each integer value of a to the next lower 
integer. The resulting estimates thus obtained for 
the minimum values of a for each value of c were 
found to agree within fl with other estimates 
obtained by inspection of fragments of the tridymite 
and cristobalite lattice in which the number of M 
atoms was increased from 1 to 50. 

As the polymer size of the most condensed struc- 
ture is increased, in both cases a b/a ratio of 2 is 
approached corresponding to the pure liquid end 
member MY,, however, the limiting structures 
produced in the two cases are completely different. 
In the first case, the limiting structures are infinite 
chains of tetrahedra with shared edges, analogous 
to the structure of BeCl, (8). In the second, the 
limiting structures are three dimensional networks 
analogous to the SiO, structures, In both cases as 
one moves away from the most condensed structures 
(i.e., to the right in the array in Fig. 1) the rings may 
of course increase in size, or side chains may appear 
in the various structural isomers, or both. Neverthe- 
less, the choice of one or the other of these structures 
as the most highly cross-linked species which can 
form has a strong influence on the predicted degree 
ofpolymerization as the MY2 content of the solution 
is increased. This in turn, as we shall see, influences 
the predicted behavior of the activity coefficients of 
the components. Therefore, it will be desirable to 
vary the contributions of these two limiting 
structures. This will be done by assuming that all 
complexes shown in the array in Fig. 1 can be 
formed, but that those to the left of boundary II 
suffer an increasing loss in stability, because of the 
necessary replacement of shared tetrahedral corners 
by shared tetrahedral edges-linkages which are 
presumably more strained and less stable as the 
distance to the left of boundary II is increased. This 
distance will be designated by the integer d 

d = a(min, II) - a. (9) 

1.2 Stability of Complexes. In the following 
generalized polymerization reaction 

a MY, + M,Y,, + (4a - b) Y, (10) 

on proceeding from left to right we find the following 

FIG. 2. Crystal fragments of the tridymite structure in 
which there are a minimum number of unshared tetrahedral 
corners (Y) for a given number of tetrahedra (MY& The 
vertical dimension in each case denotes the number of 
hexagonal layers of MY, tetrahedral; the other dimension 
refers to the number of tetrahedra along an edge of each layer. 
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changes in the numbers of shared, unshared, and 
free anions Y (Eqs. (5)) 

(-Y-);0+4a-b, 
(-Y); 4a + 2b - 4a, 

(Y);O+4a-b, 

The net result is that 8a - 2b unshared Y ions 
disappear and 4a -b each of shared and free Y 
anions are formed. Thus this reaction may be viewed 
as the reverse of reaction (1) taken 4a - b times. 
The accompanying free energy change will be 
approximated as 

AC,, b = -(4a - b) G + (d) G,, (11) 
where G represents the free energy change associated 
with reaction (1). The term (d)G, denotes the loss 
of stability which will be assigned to complexes 
which lie to the left of boundary II in Fig. 1; dis an 
integer which specifies the distance left of the 
boundary (for all complexes to the right of the 
boundary d = 0) and G, is a free energy parameter. 
The equilibrium constant for reaction (10) may be 
approximated 

K a,b = &*fE = exp [(4a - b) CL - (d) 71, (12) 
1.4 

wherein u = GIRT and y = G,iRT. The standard 
states to which dG,,, and the various activities 
&,,b refer are, with one exception, hypothetical 
liquids 

NY, WMY41, and Ncb--lajiMmybl, 
in which N is the only cation and the anions have in 
each case a single formula-a single set of a and b 
values-but include all possible structural isomers 
in equilibrium amounts. The activity of such a 
hypothetical component in a mixture is expressed 

~(Nd%Yd = (di--2’)(=%z, (I) = -02,, b, (13) 
wherein the activity of cation N is taken as unity. 
Since N is the only kind of cation, it seems reasonable 
to assume that there will be only small entropy and 
heat effects associated with its self-mixing when the 
hypothetical pure liquids are mixed. 

For species to the right of the boundary II in 
Fig. 1 the above approximation for the value of 
K,. b would be exact if the free energy of each hypo- 
thetical pure Iiquid could be expressed as the sum of 
contributions which are proportional to the number 
of each kind of atom present; i.e., if 

G’(N,-&,Y,) = (b - 2~) GN + (a) GM 

+ (4~ - b> Gw 
+ (2b - 4a) GY(o, 

wherein GN, Ghl, GYoj, and GY(,, denote the free 
energy contribution per gram atom of N, M, 
shared Y, and unshared Y atoms, respectively. Such 
a relationship might well be expected to approxi- 
mate Ho. Furthermore, since the hypothetical 
liquids which serve as standard states contain all 
the structural isomers of the Complex anion M,Y,, 
there is no contribution to So from isomerization 
and hence an expression of this form might also 
approximate So. Consequently equations 11 and 12 
seem reasonable approximations. 

1.3 Activity of Complexes. In order to make use 
of the above expression (12) for the equilibrium 
constant K,,, b, it is first necessary to relate the 
activities of Y, MY4 and M,Yb to the concentrations 
of the various species in mixtures. To obtain these 
relationships it will first be assumed that, as in 
mixtures of linear polymers (9), the entropy of 
mixing can be represented in terms of volume 
fractions 

AS,,,= RCniln@i, (14) 
or 

(again, c is the number of cross links and is equal to 
3a + 1 - b. Here and elsewhere, the limits of the 
double summations are c = 0 to 00 and a = c + 1 
to to. The subscripts 0,l; 1,4; and a,b denote, 
respectively, the anions Y, MY,, and M,Y,.) Since 
the volume of each complex should be determined 
almost entirely by the number of anions it contains, 
we will approximate the volume fractions by 

q, 
a,b 

= -fn..b 

nl + 2n2 

where n, and n2 denote moles of NY and MY, 
respectively. The following material balance re- 
lationships then may be written: 

@O,I+~~@CL~=~P (16) 

where it may be noted that the first term in each 
double summation (with c = 0 and a = 1) cor- 
responds to the monomer MY4; X2 is the stoichio- 
metric mole fraction of MY2 in the mixture. 

The heat of mixing will be approximated by 

AH,,, = ff@o, 1 2 z: (2b - 4a) %, br (18) 
in which the summation term represents the number 
of moles of unshared Y’s in the mixture. The product 
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of this times the fraction of Y anions which are 
free (@,, ,) should be proportional to the moles of 
free Y - unshared Y “contacts” in the mixture. 
These contacts are assumed to produce the principal 
contribution to the heat of mixing. 

The expressions for the entropy of mixing (Eq. 
(14)) and the heat of mixing (Eq. (18)) may be 
introduced into 

RTlnd 
a, b 

= WHm - T&J __- 

ano. b 
(19) 

to give the following expressions for the activity of 
Y and M,Y, 

+4P(l-@,,,) T- 
[ 

X2 
1 + x2 I) 

9 cw 

b@o, 1 +4/3@,,, -yl+g& 
[ II , (21) 

2 

wherein ,R = HIRTand b is the average number of Y 
anions per polymeric species; i.e., a polymerization 
number 

,==bna.b= z’C@,,b 

C%&b C C (l/b) g;’ 
(22) 

1.4 Distribution of Complexes. Introducing these 
expressions for activities into the equilibrium 
constant expression (Eq. (12)), we obtain the follow- 
ing equation for the volume fraction of a species 
May, 

@,, b = (uv)” V"-'/eXp (I + dy), 
wherein 

U= 4.4, 

(23) 

( I x2 V=(lPo,Jexp a+-4/3 @o,,-Q+- I + x2 1 I -1 . 

The volume fraction of M,Y, in a given mixture 
thus is determined largely by two factors, one raised 
to the power a and the other to the power c - 1. 
As a consequence, the concentration in a given 
mixture of successive species with increasing a or 
with increasing c falls logarithmically. As the compo- 
sition is changed however, the concentration of a 
given species rises to a maximum and then falls 
(Fig. 3). 

1.5 Activity of Components. The activity of NY 
is taken to be equai to that of free Y-since LZZ’~ is 
assumed to be unity (Eq. (13))-and so is given by 
Eq. (20). The activity of MY, (J$‘~) should be 
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FIG. 3. Volume fraction of some polymeric species in 
LiF-BeF, melts at -650°C. Species (BeoFBo+,) from the top 
row of the array in Fig. 1 are represented by dashed lines. 
Species (Be,,F*.+,) along boundary I of Fig. 1 are denoted by 
full lines. 

proportional to the quotient LZ!,,~/&‘~,,. Upon 
introducing the appropriate expresstons from Eqs. 
(20) and (21), and choosing a proportionality 
constant such that UQI, becomes unity as X2 
approaches unity, we obtain 

d2 = (@s,4/@02, dexp 
( 
2~ + 4/3(1 + Qo. J 

[ 
2x2 

x @po,,i-- 
1 + x2 1 -4P + 20 - @o, 1) 

(24) 

[The proportionality constant was determined 
from the following limiting values: 

X,=1; a,=]; QO,,=O; 6=co; and 
@I, ,m, 1 = exp( 1 - 26). The limiting value of 
CD,, ,/@, , as X2 approaches unity was deduced 
as follows: if, in Eq. 23, y is taken to be 0, 
then 

12 @*,b = ; -$ vc-’ 2 (UV)” 
c=O 0=c+l 

u m =-- c 41 - UV> c=. (UV2)’ 

= U/[e(l - UV)(l - UV’)] 
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Here first z (UP’)” is replaced by l/(1 - VV) 

and then 2 ( UV2) is replaced by l/( 1 - UV2). 

The prod&s UVand UV2 each must fall in the 
range O-l if 2 1 @a* b is to be tl . In the limit 
UV2 -+ [exp(2a - l)]@,, &Pi,, -+ 1. Hence 
@*. 4m. 1 --f exp(1 - 21x). With y # 0, analo- 
gous arguments show that UV2 and @1,4/@12 
still approach the same limits as TX2 + 1.1 

1.6 Calculation Procedure. With given values of 
the parameters CL, /3, and y, a melt composition 
(X2) is chosen and trial values of @a, L and @,,4 are 
selected. The summations 

are then evaluated using Eq. (23) and tested in the 
material balance Eqs. (16) and (17). @,,, , and @1,4 
are refined by iteration until they satisfy these 
boundary conditions. 

]This iteration procedure is simplified consider- 
ably if y = 0 since then 2 2 @,, ,, may be 
replaced by the rational expression 

U/[e(l - UV)(l - UV2)] 

(see above) and @,, 4 is given explicitly by 

@,,4=Z-dZ2- l/(e2V3) 

wherein 

z = 41 - @o, 11 W + V + 1 
2e2(1 - QO, ,) V3 

Hence only QO, i need be refined and with but 
one summation determined numerically.] 

Once Qj,, , and @,, 4 values have been determined for 
a chosen melt composition the average value of b 
is determined from the summation 2 2 (l/b) @‘,, ,, 
(Eq. 22) and finally d i and d2 are calculated by 
means of Eqs. (20) and (24). 

The summations converge more slowly as X2 
increases, especially as y is made larger. The itera- 
tions required to determine QO, i and @,, 4 become 
more lengthy and also more hazardous in the 
sense that too large a change in @,,, i or @,, 4 can 
easily cause a summation to diverge. Using the 
CDC-1604 computer and carrying summations to 
c = 3000, calculations could be carried to X, - 0.95 
with y==O, to X2- 0.60 with y = 0.2, and to 
X,-O.40 with y =OS. The limit in X2 beyond 
which convergence in the summations could not be 
attained below c = 3000 arises because as y is 
increased, crystalline aggregates are favored over 
chains and since the former contain a greater ratio 
of unshared to shared Y anions for a given size of 
polymer, it is necessary that much larger polymers 
be formed as X2 is increased and the number of Y 
anions available for M cations is decreased. 

2. Results 

Before comparing this model with observed 
activities of the components in NY-MY2 systems, 
let us examine the effect of each of the adjustable 
parameters on the predicted behavior of the activity 
coefficientsf, (of NY) andf, (of MY,). The calculated 
curves in Fig. 4 show that the free energy para- 
meter a has perhaps the most profound influence 
upon behavior. As a is decreased (Fig. 4a), corre- 
sponding to a decreasing tendency toward polymer- 
ization, bothf, andf, show more negative deviations 
from ideality. When the parameter fi is decreased 
(Fig. 4b), corresponding to a more exothermic heat 

Y.8 

0 0.2 0.4 0.6 0.6 I.0 0.2 0.4 0.6 0.6 1.0 0.2 0.4 0.6 Cl6 1.0 
MOLE FRArr’3N OF MY e 

FIG. 4. Effect of variation of adjustable parameters on calculated activity 
coefficients in the system NY-MY2 or N2Y-MY2. Numbers given for each 
curve denote the values of OL, 8, and y, respectively: (a) Variation of or; (b) 
Variation of /I; (c) Variation of y. 
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of interaction between bound and unbound Y 
anions& is uniformly lowered whilef, is decreased 
below X, - 0.17 and is increased above this value. 
As the parameter y is increased above zero (Fig. 4c), 
corresponding to an increased instability of rings 
smaller than 6-numbered ones in the polymeric 
species, the principal effect is to increase f2 at 
higher values of X, reflecting the more rapid 
approach of d2 to unity as larger polymers are 
formed. The limiting value of f2 as X, approaches 
zero is 

(f*)xz+o = 4exp(2cr+4/3-3) 
The corresponding limit for f, is 

(fi)Xl4 =42 
at least when y = 0. 

2.1 LiF-BeF, System. Smoothed values of the 
activity coefficients of BeF, from the recent EMF 
measurements of Hitch and Baes (10) in this system 
are compared with curves calculated from the 
present model in Fig. 5. The parameters a and y 
were assumed to vary linearly with 1 /T, “K-’ 

a = a0 + a‘/T; y = y” + f/T 

and all five parameters-aO, a’, y”, y’, and &-were 
adjusted by a nonlinear least squares computer 
program (II) to give the best fit to the EMF data 
(Table II). Included in the fit were points taken from 
the LiF liquidus curve (12) which yield& values in 
the high LiF composition range. 

The overall fit to the EMF data was within 2n, CJ 
being based on the observed scatter in the EMF data 
which was typically +I to f3 mV. This agreement is 
considered quite satisfactory in view of the essential 
simplicity of the model and the small number of 
parameters which it employs. 

2 I I I I I I 

FIG. 5. The LiF-BeF, system. Points on the BcF2 curves are 
from smoothed EMF data (Ref. IO); points on the LiF 
curves are from the liquidus data (Ref. 12); curves were 
calculated using parameters in Table II. 

Distribution curves for some of the species 
Be,Fib-2“)- calculated from the adjusted para- 
meters at 645” are shown in Fig. 3. These serve to 
indicate that such polymeric systems are highly 
polydisperse and ought not to be described in terms 
of just a few species. 

2.2 FeO-Si02. Silicate systems are difficult to 
study because of the high temperatures involved and 
hence accurate activity measurements are relatively 
few. Not surprisingly, considering its importance in 
steel making, the FeO-SiO, system is the silicate 
system for which perhaps the most accurate such 
data are available. The measurements of Fe0 
activity by Bodsworth (23) agree well with those of 
Schulmann and Ensio (I4), both showing that fFeo 
has a very low dependence on temperature. Their 
data are compared with a curve calculated from the 
present model (Fig. 6) with a least squares adjust- 
ment of a and fl. One point representing fsio2 at the 
silica (tridymite saturated) liquidus (15), calculated 
from a recent value for the heat of fusion of Si02 
(2.5 kcaI/mole) reported by Kleppa (16), was used 
to aid in adjusting the value of y. Because of the 
high value of y (Table II), calculations were not 
carried beyond Xsioz = 0.36. (Since the FeO-SiOz 
mixtures involved contained some Fe(III), the data 
were corrected by the procedure described by 
Masson (4) 

&Feo = ~,,o(obs)(N~,++/N,,++) 

FIG. 6. FeO-SiO, system. Open circles (Ref. 23) and closed 
circles (Ref. 14) on Fe0 curves are at various temperatures 
in the range 1259-1407°C. The point on the SiOl curve is at 
the liquidus composition at 1300°C (Refs. l&16). The curves 
were calculated using parameters in Table II. 
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TABLE11 

PARAMETER VALUES FOR SEVERAL SYSTEMS 

System Temperature (“C) OL B Y r+ CA> Z+‘lr+ 

FeO-Si02 1300 -0.09 0.41 0.64 0.75 5.33 
MnO-SiO, 1600 -1.27 0.72 0.33 0.80 5.00 
PbO-Si02 1000 -1.66 0.22 0.11 1.21 3.31 
LiF-BeF2 500 -2.39 0.49 0.07 

600 -2.32 0.43 0.02 0.60 1.67 
700 -2.25 0.39 -0.02 
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wherein the observed activities of Fe0 were multi- 
plied by the Fe++ cation fraction (NE,, +) in the pure 
“FeO” standard state (17) to which the observed 
activities were referred originally and were divided 
by the Fe++ cation fraction (NFe++) found in the 
mixtures.) 

The fit of the calculated curve for the activity 
coefficient of Fe0 (Fig. 6) is excellent, being within 
the small scatter of the data. The curve for SiOl 
generated by the model, however, is less reliable 
since it has a strong dependence on the choice of y, 
which in turn is based on the single point for ysio2 
at the SiOz liquidus. 

2.3 The PbO-SiOz System. Recent EMF data of 
Sridhar and Jeffes (18) in this system agree well with 
earlier equilibrium measurements of Richardson 
et al. (19) (Fig. 7). The curves calculated by the 

2r I 

‘““~ 
0.02 1 

I 

0.01! 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

MOLE FRACTION 51% 

FIG. 7. The PbO-SiO, system. Open circles (Ref. 18) and 
closed circles (Ref. 19) on the PbO curve and the point on the 
SiOl liquidus (Refs. 16,20) all are at 1000°C. The curves were 
calculated using the parameters in Table II. 

0 0.1 0.2 0.3 0.4 0.5 0.6 
MOLE FRACTION SiOp 

FIG. 8. The MnO-SiOl system. Open circles on MnO curve 
are based on smoothed data at 1500 and 1650°C (Ref. 21); 
closed circles are from MnO liquidus (Refs. 22,4) and open 
circle on SiO, curve is from the Si02 liquidus at 16CO”C 
(Refs. 22, 16). The curves are calculated using parameters in 
Table II. 

present model were adjusted to the EMF results. 
Again, points from the tridymite liquidus (20) were 
used to aid in adjusting y and thus better establish 
the SiO, curve. The fit is somewhat less satisfactory 
than the previous ones, but probably does not greatly 
exceed the uncertainty of the data. 

2.4 The MnO-Si02 System. The smoothed data of 
Abraham et nl. (21) for dMnO, referred to the solid 
as standard state were adjusted to the supercooled- 
liquid standard state using the liquidus curve of 
Glasser (22) and a heat of fusion estimated by 
Masson (4). The fit of the model to the data again 
is satisfactory (Fig. 8). 

Discussion and Conclusions 

The present model is an improvement over the 
ones proposed previously by Masson (4, 5) and 
Pretnar (6) in that it includes all the polymeric 
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species of 4-coordinate Si4+ ro Be2+ which might 
be expected to form in silicate or fluoroberyllate 
melts. In addition, use of the volume fraction to 
express the entropy of mixing of the hypothetical 
components seems a better approximation than does 
Masson’s use of the mole fraction in view of the 
great range in the size of the species being mixed. 
Finally, it is reasonable to suppose that a heat effect 
would accompany this hypothetical mixing process 
because of the interaction of unshared anions (-Y) 
of the polymeric species M,Y, with the (next-nearest 
neighbor) free anions (Y). Although the present 
model is much more cumbersome mathematically 
than are either of the previous ones, it remains an 
essentially simple one with a small number of 
parameters and is consistent with the limited amount 
of accurate data thus far available for component 
activities in binary SiOZ and BeF, systems. 

Perhaps the most important assumption of the 
present model, and of the previous ones, is that the 
cation M is always coordinated tetrahedrally by Y. 
It is this condition, of course, which requires that 
extensive polymerization take place as the mole 
fraction of MY, in a mixture is increased and the 
ratio of Y to M falls significantly below 4. Yet it 
might well be observed that, after all, the electro- 
static energy of a planar MY, group is only slightly 
less than that of a tetrahedral MY, group of the 
same M-Y distance, and hence we might reasonably 
expect a decrease in the coordination number of M 
to accompany-and diminish-growing polymer- 
ization. While such a provision perhaps ought to 
be tested in a refinement of the present model 
(though this would by no means be simple) it seems 
quite reasonable to accept the present assumption 
as an adequate approximation in view of the almost 
universal occurrence of tetrahedral Si04 groups in 
crystalline silicates and the occurrence of similar 
BeF, groups in BeF, and crystalline fluoroberyllates. 

Upon accepting the basic assumption that M 
remains fully 4-coordinated, we are driven to the 
conclusion that chain structures involving shared 
tetrahedral edges (i.e., double bridges of Y anions) 
are important in melts of high MY2 content in 
systems such as LiF-BeF, and PbO-SiOz which do 
not exhibit prior separation of pure or nearly pure 
MY,. Otherwise, the network structures which 
form must become so very large in order to share 
enough of the limited supply of Y anions in such 
melts that not only are they scarcely credible, but 
also they must lead to separation of an MY2 rich 
phase. For example if a melt with an MY, mole 
fraction of 0.7 contains only network polymers such 
as those pictured in Fig. 2, the average number of M 

cations per polymer ion must be at least 63, whereas 
if chain polymers MaY2.+* are assumed, the average 
degree of polymerization which is necessary falls to 
less than 5. 

The usefulness of the present model in predicting 
the thermodynamic properties of other silicate or 
fluoroberyllate melts will depend to a large extent 
on success in relating the adjustable parameters 
CL, p, and y (or G, H, and G,) to the properties of the 
pure components, in particular the basic component 
NY (or N,Y). The few systems for which parameter 
values have been determined thus far (Table II) 
permit us only a few qualitative observations about 
such possible correlations. The heat of mixing 
parameter /3 (or H) while positive in every case, 
shows no consistent trend with ion size. (This para- 
meter, it should be recalled, refers to the hypothetical 
mixing of the polymer species; it is not related in any 
simple way to the usual heat of mixing of NY and 
MY*.) Both parameters CL and /3 do, however, show 
a consistent trend with increasing cation size 
(Fe’+ to Pb++) in the case of silicates and, in terms 
of Z2/r+, these trends include the LiF-BeF, 
system. Thus, as might be expected, CL becomes more 
negative and the depolymerization reaction (Eq. 1) 
is shifted to the right as the counter ion N becomes 
larger or more basic and, hence, provides less 
competition with M for the anion Y. At the same 
time y decreases, corresponding to an increasing 
stability of chain polymers and a lesser tendency 
toward separation of a pure MY, phase. 
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